
189 

Acta Cryst. (1988). A44, 189-192 

Thermal Phonons in the Modified Two-Beam Description of 
Diffraction near a Three-Beam Point 

BY HELLMUT J. JURETSCHKE 

Polytechnic University, 333 Jay Street, Brooklyn, New York 11201, USA 

(Received 21 July 1987; accepted 16 October 1987) 

Abstract 

The influence of thermal phonons on the dynamical 
diffraction OH near a third reciprocal-lattice point L, 
in an otherwise perfect crystal, is investigated 
theoretically. It is shown that in the first-order 
modified two-beam description [Juretschke (1984). 
Acta Cryst. A40, 379-389] all effects due to phonon 
transitions are governed by the usual Bessel functions, 
but only of arguments involving H. With this proviso, 
the first-order modified two-beam description of 
diffraction near L incorporates phonon coupling 
entirely in the standard manner of the strict two-beam 
case. Therefore typical phonon influences, such as 
the Debye-Waller factor or thermal diffuse scattering, 
can be discussed directly in the neighborhood of 
n-beam diffraction merely by using the modified par- 
ameters, i.e. structure factors, absorption coefficients 
etc. in a traditional two-beam formulation. Some 
additional implications of this result about the effect 
of other deviations from crystal perfection on the 
modified two-beam description are also pointed out. 

Introduction 

The first-order dynamical theory of the modified two- 
beam description of diffraction near a three-beam 
point, developed for perfect crystals (Juretschke, 
1982, 1984; Hcfier & Marthinsen, 1983; Chang, 1984), 
has satisfactorily reproduced a variety of experi- 
mental data involving three-beam and higher 
interactions (Juretschke, 1984, 1986a; Juretschke & 
Wagenfeld, 1986). Such agreement suggests that the 
degree of crystal perfection does not crucially affect 
the main predictions of the theory, but it remains to 
be shown explicitly why this is so. In this paper we 
study the influence on the modified two-beam 
description of deviations from periodicity induced by 
thermal atomic motions. This mainly requires rederiv- 
ing the basic equations of the modified two-beam 
approach in the presence of phonons, and then 
inspecting these equations for their predictions, 
specifically with respect to the dispersion surface, the 
Debye-Waller factor and thermal diffuse scattering. 

It was originally expected that at finite temperature 
each structure factor entering into the theory would 
carry its own Debye-Waller factor. However, as 
shown below, this is not the case. Even though the 
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modified two-beam formulation involves the structure 
factors of all coupled reciprocal-lattice points, tem- 
perature effects are governed entirely by the Debye- 
Waller factor of the primary interaction. 

These results, correct in the asymptotic regime, of 
course also bear on the more general three-beam case 
at finite temperatures, a configuration for which the 
effect of phonon coupling apparently has not been 
worked out explicitly. 

General formulation 

In a three-beam interaction we describe propagation 
by the three propagation vectors K0, KH, and KL. If 
the primary diffraction is chosen to be via H, and the 
additional coupling occurs via L, then the usual two- 
beam phase matching now requires two conditions: 

KH=K0+.H; K L = K 0 + L  (1) 

Maxwell's equations lead to six scalar equations for 
the field amplitudes, usually decomposed into the 
two principal polarizations o- and 7r with respect to 
the plane of incidence 

(E~, ~ . . . . .  EH, E o , E H ,  EL, E~). (2) 

These equations involve the structure factors F . ,  
FL and FL-H, and the deviations s~i of the propagation 
vectors from their average value within the crystal 

~=(K, .Ki ) ' /2 -k (1 -½_FFo) ,  i =0, H, L, (3) 

where k = w/  c, F = e2/(eomoj2vce,). 
The modified two-beam description applies when 

EL >> Go, ~, ,  i.e. when L is still far from the Ewald 
sphere. In that case ~, is a known parameter (propor- 
tional to the distance of L from the Ewald sphere) 
and the two fields E~, E~ can be expressed in terms 
of the other four fields of (2), and SOL. The remaining 
four equations can then be recast into standard two- 
beam form, at least to terms including 1/S~L 
(Juretschke, 1984). In the notation of that paper, these 
equations are 

o"  o -  2so0 Eo + kFF~r_E¢, = 0 
o -  o"  kFFHLEo + 2 ~ E ~  = 0 

(4) 
2~g E~ + kFF}c  E ~ = 0 

kFFTqL E'~ + 2,~Tq E Tq =0, 
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which hold with respect to shifted Lorentz points 
given by 

//1 
~g = ~o - --4-~L ( kF ) 2 FL F r_ 

//l 
, ~  = ¢H --4-~L ( kF)2 FL-HF g_A 

(5) 
H4 ~g= ~o---~L ( kF)2FLFr. 

/ / 5  
~H= ~H---4-~L ( kF)2FL-HFL_H 

and relative to the effective two-beam structure factors 

//1 
F~HI_ = Fn - -j-~L ( kF ) FL F f _ a 

(6) 
/I6 

F~L = PFH - ~ L  ( kF)FLF£_Ft. 

Here P=cos2Oa,  and the coefficients Hi ( i=  
1 , . . . , 6 )  are geometrical factors arising out of 
polarization projections, and are given by Juretschke 
(1984) and H0ier & Marthinsen (1983). (//2 and H3 
describe the coupling of cr and ~- modes, and only 
appear explicitly to order 1/~:~_.) 

If, in addition, the crystal is traversed by N low- 
energy elastic modes described by rigid atomic dis- 
placements of the form 

N 

U(r)=  ~ u j s i n ( q j . r - % t + % )  (7) 
j=l 

the set of fields (2) must be generalized to include all 
phonon couplings induced by the modes (7). 

For simplicity, we will initially restrict the treatment 
to a single mode 

u sin (q.  r +  ¢ - tOpt) (7') 

and all phonon transitions associated with it. Then 
the set of fields (2) becomes 

o r ~- 7r . or 77- 
( E l 0 ,  E~H; Elo, EIH, ElL, ElL) ( 8 )  

with the integer I running over all values -0o < 1 < oo, 
and the case I = 0  corresponds to the phonon-free 
cet~tt~l f~elds. 

In the same manner, (1) is generalized to 

K m = K t o + H = K o o + / q + H ;  Ku.=Kto+L (9) 

but, if all phonons of interest are of sufficiently low 
energy, the further condition of energy (frequency) 
conservation can be ignored, i.e. all dispersion sur- 
faces can be constructed for a single energy, or 
frequency. At this common energy, however, as a 
consequence of (9), each I will lead to its own disper- 
sion surface, so that we must also generalize (3) with 
this index: sCto, ~lH, ElL" 

The coupling strengths between the various fields 
arise from the standard expansion 

exp[iM, u sin (q. R+  ~¢)] 

= Z  ( -1)  ~ exp(it~o)Jt(M.u)exp(itq.  R) (10) 
l 

that enters in the Fourier expansion of the charge 
density (e.g. K6hler, M6hling & Peibst, 1974) in the 
presence of (7'). 

Despite these additional couplings, however, 
exactly the same procedure as was followed for the 
modified two-beam formulation in the absence of 
phonons can still be carried out. If L is sufficiently 
far from the Ewald sphere, we can assume that for 
all l of practical interest 

~IL > lq (11) 

so that all ~:tL can be represented by the common 
value SC:L. 

Results 

The outcome of carrying out the same set of manipu- 
lations outlined in the section above for obtaining 
the modified two-beam equations in the absence of 
phonons leads to expressions of which the following 
two, for cr polarization, are representative: 

0 =  2~:toE?o + kr Y' ( -1 ) "  exp(i/'~) 
l '  

x { J r (H  • u)FAE(~-t,)H 

kF [ FLF £( //I E(~-r)o -/-/2 E (]_ r m) 
2~t 

X ~ Jr-r,(L. U)Jr,(-L.  u) 
l" 

or ~ 
+ FL- .F  c( II~ E(t_r~H +//3Ecl_r~n) 

XY'r, J r - r ( L . u ) J r ( [ H - L ]  . u ) ] }  

0= 2~mE'IH + kF Y" (-1)  " exp( il'~p ) 
l' 

X { J r ( - H  . u)FHE(~-r)o 

2~L F £-a FL( I-11Etort-;')° -//2E(~t-r)°) 

x y" d , , - r ([L-  H] .  ulJ, , ,(-L, u) 
l" 

F or ~" + F £ - R  L- H(//1E(t_r)H +//3E(t_r)H) 

(12a) 

(12b) 
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When ~L -~ ~ ,  these equations reduce to the stan- 
dard form of the phonon contributions to the two- 
beam case (e.g. K/Shler et al., 1974). For finite but 
large ~:L, the new contributions are characterized by 
the sums over products of Bessel functions. Each such 
product, as expected, involves as arguments the same 
two reciprocal-lattice points as those of the two struc- 
ture factors it modifies. However, these are now to 
be summed over all l". These sums can be carried out 
using a standard theorem (Abramowitz & Stegun, 
1964) which states 

JI(X "+ y) = Y, Jr_l(x)Jr(y ) (13) 
1' 

such that 

E Jr-r,(L. u) J / . ( -L ,  u) = Jr(O) = 6l,O 
l" 

(13') 
E Jr-r,(L. U)Jr,([H- L]. u) = Jr(H. u). 
l" 

With the reductions (13'), (12) can be rewritten, 
using (5) and (6), as follows 

0 = 2~,°oE 1% "~ krJo(H, u) F~cE 1~ 

+kF ~ ( - 1 ) r  exp(i/'~o)J/,(H . u)F~EE(~_r) H 
I ' # 0  

+ (kF)2H2FcFLE~o-(kF)----2-2 H3FcFL_n 
2~L 2~L 

x ~ .  ( -1)r  exp(il' ~o)Jr(n.u)E~_r)n 
I' 

0 = kFJo(H, u)F~LE~o + 2~7n ETH 

+ kF ~ ( - 1 ) r  exp(i/ '~)3rt,(-H, u) F°HL E (°I_r)o 
I ' # 0  

(kF) 2 ( k r )  ~ 
- - - H a F E - a F L - n E ~ n +  H2Fc-F~FL 

2~, 2& 

x ~ ( - 1 ) "  exp(ir~)J,.(-H.u)E7,_,,)o. (14) 
1' 

For completeness, we also list the corresponding 
equations obtained for the other polarization: 

0 = 2~7oE 7o + kFJo(H, u) FacE,~ 

- k r  ~ (-1)r  exp(il'~o)Jr(n.u)FacE<~_r)n 
1 ' # 0  

(kV) ~ (kr)  ~ 
+ [I2FcFLE'[o+ H2FcFL-H 

2gL 2~c 

X~-" (-1)" exp(il'q~)J,,(H.u)E(]_,,)H 
1' 

0 = kFJo(H, u) F~LE lTrO "q- 2~7H E I~H 

- k F  ~ (-1)r  exp(il'¢)Jr(-H.u)F74LE(~_r)o 
I ' # 0  

(kr)  ~ (kr)  ~ 
- - -  IlaF c-n FL-HE I~ - - -  IIaF r_A FL 

2~L 2gL 

x ~ ( - 1 ) r  exp(ilq~)J,.(-H.n)E~_r)o. (15) 
1' 

In the limit u + 0 ,  (14) and (15) agree with the 
three-beam expressions derived earlier [Juretschke 
(1984), equation (17)], and for u # 0, but in the limit 
SOL + ~ ,  they go over into the traditional two-beam 
equations in the presence of phonons. 

Equations (14) and (15) represent the central result 
of this paper• Their generalization to N phonon 
modes follows the same procedure, without complica- 
tions. It merely requires that each index I be replaced 
by the set of integers [/j] = ( 1 1 , 1 2 , . . . , / j , . . . ,  IN) 
labelling the phonon number of each mode associated 
with a given field, and that each Bessel function 
labelled by [/j] be identified by a product of Bessel 
functions: 

Jt6](M • u) = I] J6(M • uj). 
J 

The resulting equations can be exemplified by the 
first equation of (14) (ignoring the o'-Tr coupling 
terms) 

,, E~r 0 = 2s~t61o t/jlo 

+ k F [ ~ J o ( H  uj) 1 F ~ E ~ • AC [6 ]H 

+kF 2 ( -  1)xS' exp(iY, lj~j) 
[z;]~[o] 

× [I--Ij JIj(H . uj) ] F~cE[~j-t;]H (16) 

and the other lines follow along the same pattern. 

D i s c u s s i o n  

The resultant equations (14) and (15) and their gen- 
eralizations exemplified by (16) exhibit a number of 
notable features. 

First of all, they mimic in all respects the true set 
of two-beam dynamical equations in the presence of 
phonons. This implies that, within the approxima- 
tions inherent in the modified two-beam formulation, 
all thermal averaging procedures on the parameters 
in these equations can be taken over from those in 
the existing two-beam literature. Such transfers, of 
course, require that all results are referred to the 
modified dispersion surfaces governed by (5), and to 
the modified two-beam structure factors (6). A sur- 
prising aspect of the form of (14) to (16), however, 
is that only thermal factors associated with H appear, 
so that, for example, the structure factors FL and 
FH-L also contained in these equations, through (5) 
and (6), are not modified by phonons. 

The main reason for this result must be that 
phonon-excited fields also find themselves in a three- 
beam situation and are subject to its coherent interac- 
tion, but now with the possibility of coupling through 
many more channels to each other. Nevertheless, it 
is surprising that all these couplings are entirely re- 
flected in altering the modified two-beam formulation 
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for zero temperature. Hence all structure factors can- 
not be considered on the same footing. 

In fact, (14) and (15) are exact three-beam 
equations in the limit u = 0. One must therefore raise 
the question of what additional approximations pre- 
vent them from being exact when u # 0, because, 
surely, sufficiently close to the three-beam point the 
other structure factors besides FH must also undergo 
thermal modifications. The answer is to be found in 
the condition (11)-  which breaks down before the 
other, implied, approximation H >> lq - whose break- 
down requires that we consider all Ctt. separately, 
since they differ by amounts of order lq. The detailed 
consequences of this breakdown remain to be investi- 
gated. But it should occur earlier at high temperature, 
where high values of l matter. At low temperature, 
(14) and (15) can be expected to remain valid over 
the whole range where Ct. is a parameter rather than 
a dynamical variable. 

A further implication of (14) and (15) is that in the 
next higher approximation in the approach to the 
three-beam point, in which the coupling between tr 
and rr polarizations plays a role (Juretschke, 1986b), 
there appear new phonon-induced interactions in the 
last sums on the right side of these equations, while 
some of this coupling remains phonon independent. 
Whether or not these terms are incorporated into the 
standard form under the transformation introduced 
by Juretschke (1986b) remains to be seen. 

More generally, (14) and (15) demonstrate that the 
modified dispersion surfaces and the modified struc- 
ture factors of the modified two-beam formulation 
form the proper framework on which to impose any 
phonon coupling. This framework itself remains 
phonon independent, and therefore it constitutes a 
description of diffraction near a three-beam point that 
truly contains all the inherent features of exact two- 
beam theory. While for some purposes it may be 
useful to refer the modes of the modified description 
back to those of the pure two-beam case (Hfimmer 
& Billy, 1986), for others, like those under considera- 
tion here, it is more consistent to treat the modified 
case as a two-beam case in its own right. 

For the same reason one is led to expect that other 
deviations from crystal perfection, such as a weak 
mosaic structure, can be handled within the same 
framework merely by replacing the usual parameters 
by their modified equivalents. This remains to be 
tested theoretically, but it has gained support from a 
recent kinematic model based on double rather than 
single scattering in each block (Shen, 1986), where 
the modified structure factors (6) also emerge as the 
initial modification near a three-beam point. 
[Although, of course, (5) is beyond such kinematic 
approach.] Since the same modification occurs in 
both dynamical and kinematic models, and these two 
extremes are related exactly as in a strict two-beam 
case, it is reasonable to expect that the discussion of 
mosaic crystals also falls within the same pattern. In 
fact, the results of Kshevetskii, Mikhailyuk & Polyak 
(1985) show that the general broadening accompany- 
ing reflections from a mosaic crystal surface is also 
enhancing the many-beam features, although, as 
expected in the averaging over unsymmetric lines, 
their detailed structure can be modified significantly. 

This work has been partially supported by JSEP 
contract no. F49620-85-C-0078. 
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Abstract 

Throughout the history of powder diffraction practice 
there has been uncertainty about whether or not a 
refractive-index correction should be made to Bragg's 
law. High-precision Bragg-angle measurements have 
been performed with synchrotron radiation on SRM- 
640 silicon powders at glancing angles; it is found 
that little or no correction is necessary for the usual 
20 angle range. 

1. Introduction 

The question of the need to use a refractive-index 
correction for powder diffraction data has long been 
cloaked in uncertainty. The problem is discussed in 
this paper and is based on the theoretical background 
and recent measurements of a silicon-powder stan- 
dard using synchrotron in high-resolution parallel- 
beam geometry. 

When X-rays enter a material refraction at the 
surface causes a small shift of the observed Bragg 
reflection angles to larger 20 values than indicated 
by Bragg's law. The shifts are normally much smaller 
than other sources of errors and corrections are not 
generally applied in the usual routine qualitative and 
quantitative powder diffraction analyses. The correc- 
tion has been used mainly in precision lattice-param- 
eter determination (e.g. Lipson & Wilson, 1941) but 
there is no general agreement, and some authors use 
it while others ignore it. In the 1960 IUCr round-robin 
test on the precision of lattice-parameter determina- 
tion of powder samples with Cu Ka radiation, the 
following values were added to the derived lattice 
parameters to correct for refraction: diamond 
0.00004, silicon 0.00004 and tungsten 0-00016A 
(Parrish, 1960). 

Synchrotron-radiation sources now provide im- 
proved resolution because high intensity and the nar- 
row instrument functions can be simultaneously 
exploited (Hastings, Thomlinson & Cox, 1984; 
Parrish, Hart & Huang, 1986). The narrow sym- 
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metrical profiles and general absence of systematic 
errors open the possibility of higher precision and 
more reliable lattice-parameter determination 
(Parrish, Hart, Huang & Bellotto, 1987). The question 
of how one should correct powder data for X-ray 
refraction therefore becomes more important than it 
has been, especially because the move to synchrotron- 
radiation sou~rces also means that wavelengths other 
than the 'standard' copper Ka will be used. 

In the growing field of grazing-incidence diffraction 
studies of thin films, the angular shifts are much larger 
than in conventional 0-20 scanning and corrections 
are necessary for many of the analyses. This is 
described separately (Lim, Parrish, Ortiz, Bellotto & 
Hart, 1987). 

2. Theoretical background 

The index of refraction n of X-rays is slightly less 
than unity and is given by 

n = l - 6  

where 

t~ = ( - e 2 / 2  ,n'mc2) h 2p; ( 1 ) 

e is the charge on the electron, m is the electron mass, 
c is the velocity of light, A is the wavelength in 
~ngstr6ms, and p is the number of electrons per unit 
volume. For wavelengths below about 2 A, 6 is of 
the order of 10 -4 to 10 -5, depending on the density 
of the material. 

Dynamical diffraction is usually associated with 
highly perfect single crystals. However, it is interest- 
ing to note that some of its concepts were required 
to analyze this powder problem. It should also be 
noted that a fundamental premise of kinematic 
diffraction theory is that all parts of the sample are 
illuminated by the full unattenuated primary beam; 
by definition therefore n = 1 and the question of 
refraction cannot arise. In the case of single-crystal 
diffraction it is well established, both theoretically 
and experimentally, that Bragg's law 

2d sin 0L = A (2) 
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